

Discovering Better Medicines through Target-Centric TPD Powered by MOPED™ Glue Platform

June 5, 2024

SK Life Science Labs is a U.S. Subsidiary of SK Biopharmaceuticals

HEADQUARTERS

SUBSIDIARIES

Why targeted protein degradation?

Protein degradation offers advantages to improve clinical outcomes

SK Life Science Labs TPD capabilities powered by innovative platform

Proprietary drug discovery & preclinical development engine

MOPED™ Glue Platform

SK Life Science Labs Differentiated Approach Breaks Through Limits Of TPD

I MOPED™ enables SK Life Science Labs to discover novel molecular glues utilizing an expanded set of E3s

Majority of TPD Companies

Most TPD companies primarily use CRBN and VHL, limiting target access

SK Life Science Labs leverages a wider range of E3s to expand target access

MOPED™ Leverages Induced Proximity To Discover Glues

MOlecular Proximity Enabled Detection (MOPED™)

Emerald

A highly sensitive biochemical workflow to discover glues against defined POIs

Sapphire

A cellular context-based workflow to discover glues against defined POIs

Molecular Glue
Discovery

INCREASE ACCESS TO TARGETS

Targeting structured and unstructured regions

INCREASE NUMBER OF LEADS

Multiplexing compounds, targets, and/or E3s

EXPAND E3 OPPORTUNITIES

Known E3s, target matched E3s, and/or E3 agnostic

BROADEN BIOLOGICAL IMPACT

Exploring potential biological functions beyond TPD

Emerald: Biochemistry Designed For Molecular Glue Discovery

Highly sensitive assay to find leads for chemical optimization

Glue screen to measure ternary complex formation

- Biochemical assay format with sensitivity to detect < 2 nM of ternary complex
- ~20 E3s are tested individually with the library of E3s continually expanding
- Pools of compounds and POIs are tested for efficient 1536-well screening of a > 500,000 compound library

Hits discovered for 3 of 4 targets

- Degradation observed for target A
- Hits elaborated to <100 nM for target B
- Early stage of hit elaboration for target C
- Glues for 5 E3s across 4 targets discovered

Pipeline

SK Life Science Labs Current Focus: Oncology & Immunology

SK Life Science Labs programs and platforms are well positioned for partnering with significant market potentials

Program	Disease Area	Discovery	Preclinical	
IKZF2	Solid Tumors	PVTX-405		
ER	HR+ Breast Cancer	PVTX-321		
p300	Oncology			
STAT3	Immunology, Oncology			
SMARCA2	Oncology			
Heterobifunctional Target	Oncology			
Molecular Glue Target	Oncology			

Packaging The Genome And Positioning Genes For Transcriptional Outcomes Requires Tightly Controlled Interplay Of Epigenetics

Machinery can read, write, erase, and remodel

- **DNMTs** methylate CpG dinucleotides, frequently in the context of CpG rich regions
- Histone modifying enzymes catalyze the addition or removal of a variety of post-translational modifications (PTMs) including acetylation, phosphorylation, methylation, and many more
 - Epigenetic readers, including proteins that contain bromodomains or chromodomains, interpret the histone PTMs
- Chromatin access requires the activity of SWI/SNF ATP dependent remodeling complexes

p300 is Required for the Growth of CBP Mutant or AR+ Cancer Cells

Selectivity over CBP offers tumor-specific improved tolerability in wild-type or normal cells

- p300 and CBP are HAT (histone acetyl transferase) enzymes that mark proteins with an acetyl group to activate expression of genes that are important in normal and cancer cell biology
- p300 and CBP share high sequence similarity across functional domains posing an an unresolved challenge in discovery of selective inhibitors
- Dual inhibitors have entered the clinic despite narrow therapeutic margins
- p300 knock-down is synthetically lethal in presence of CBP mutations allowing for selective growth inhibition in this tumor-specific context
- p300 is required for the growth of AR+ prostate cancer cells while CBP is dispensable

p300 Degraders Show Potent and Selective Degradation

p300 selective degraders show low nM potency with minimal impact on CBP

	P300		СВР		
	D _{max} (%)	DC ₅₀ (nM)	D _{max} (%)	DC ₅₀ (nM)	
Compound 1	85	6.5	13	> max	
Compound 2	85	2.0	27	> max	
Dual Degrader	84	1.0	79	1.5	

 Selectivity of degradation measured by HiBiT knock-in of either p300 (left) or CBP (right) in A549 cells

 Dose response by western blot confirms selectivity for p300 in H1299 cells expressing endogenous and untagged proteins

p300 Degraders Result in Selective Growth Inhibition in Synthetic Lethal Context

Potent growth inhibition is observed in CBP impaired cells

- Engineered cell lines and a cancer cell line panel were utilized to investigate effects on cell growth in 6-day proliferation assay
- A clinical stage dual p300/CBP inhibitor inhibits growth in all contexts while p300 degraders lead to growth inhibition in CBP knock-out of loss-of-function (LoF)
- Selective degraders show minimal impact to growth of p300 knock-out or wild-type cancer cells

I Toxicity to bone marrow derived progenitor cells is minimized through selectivity for p300

Myeloid Progenitor Colony Forming Units

- Dual degrader and dual inhibitor inhibit the growth of bone marrow derived myeloid progenitor cells
- p300 selective degraders show markedly less potency in bone marrow toxicity assay suggesting a better therapeutic index
- Oral administration (once daily) of Compound 1 to mice with prostate cancer xenografts demonstrates substantial tumor growth inhibition at pharmacologically relevant doses

p300 Degrader With First-in-class Potential

Orally available p300 selective heterobifunctional degrader for CBP mutant cancer and mCRPC

C Kadoch et al., Cancer Discovery (2016), AR Waddell et al., Cancers (2021)

p300/CBP Regulate Histone Acetylation & Gene Expression

Tumor Regression in Prostate Cancer CDX Model

Over 100X
Improved Margin in
HemeTox Assay
(vs Clinical Compound)

Selective
Growth Inhibition of
CBP mutant
Cancer Cells

Orally Bioavailable & Low Clearance

Potential to treat >20,000 AR+ mCRPC as well as >20,000 CBP mutant liquid and solid tumors (U.S. incidence per year)

SMARCA2 Is A Synthetic Lethal Target In SMARCA4 Mutant Cancer Cells

SMARCA4 Status

mutant deletion

MSK MetTropism (n=25,775)

SMARCA2/4 are essential components of the SWI/SNF chromatin remodeling complex

- ATPase function within the SWI/SNF complex is only provided by the mutually exclusive SMARCA2/4 paralogous subunits
- The essential role of SMARCA2/4 provides a clear mechanistic basis for the synthetic lethal relationship between the paralogs
- ATPase domain is druggable however inhibitors have faced selectivity challenges
- SMARCA2 bifunctional degraders can leverage binding to a non-essential domain, retain selectivity, and minimize systemic toxicity

Discovery of Potent, Selective, and Rapid Degraders of SMARCA2

SMARCA2 degradation selectivity leads to selective in vitro anti-proliferative activity

- SKLSL heterobifunctional degraders are potent and selective for SMARCA2 with minimal impact on SMARCA4
- Parental cell line exhibits similar response as HiBiT knock-in cells

- 6-day proliferation assay utilized to investigate biological impact of SMARCA degradation
- Selective SMARCA2 degraders exhibit selective anti-proliferative activity on SMARCA4 LoF cells

Advanced Series Degraders Cmpd-105 And 106 Exhibit High Oral Bioavailability

Cmpd-105 and -106 represent exemplars from most advanced series

Degrader	Dose (mg/kg)	CL (mL/min/kg)	Vdss (L/kg)	T1/2 (h)	F (%)
Cmpd-105	0.5 (IV) 1.0 (PO)	3.9	2.2	6.3	96
Cmpd-106		2.0	1.2	7.1	88

- SK Life Science Labs lead series of degraders exhibit oral bioavailability in mice >80 %F
- Degraders are well suited for in vivo degradation and efficacy studies

SKT-16737 *In Vitro* Potency And Selectivity Translates To *In Vivo* Degradation

Degradation in wild-type Calu6 xenograft tumor model confirms *in vitro* results

- Calu6 xenograft model established for in vivo assessment of degradation
- SMARCA2 and SMARCA4 degradation in tumors was assessed after single administration of SKT-16737 at 3 mg/Kg
- Tumor exposure of Cmpd-105 is constant over 24 hrs
- Cmpd-105 leads to 100% degradation of SMARCA2 and only 35% degradation of SMARCA4 at 24 hrs
- Efficacy study is ongoing

Orally available SMARCA2 degrader has best-in-class potential

SMARCA2 selective heterobifunctional degrader for SMARCA4 mutant cancer

Rapid, Potent & Selective SMARCA2 Heterobifunctional Degrader

Orally Bioavailable & Low Clearance

Three Structurally
Diverse Series of
Heterobifunctional
Degraders

Discovering Better Medicines through Target-Centric TPD Powered by MOPED™ Glue Platform