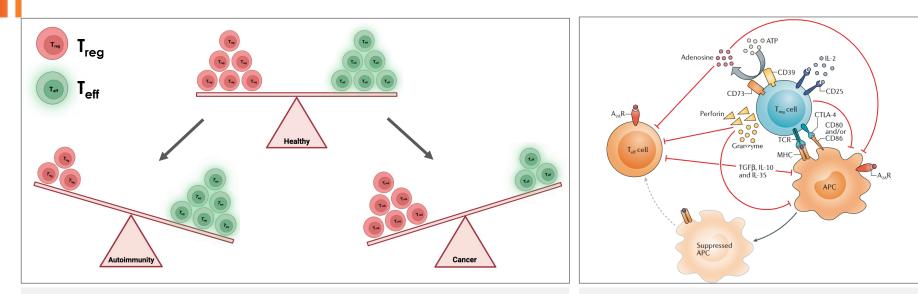

Discovery & Characterization of an IKZF2 Selective Molecular Glue Degrader with Best In-Class Potential is in the list is th September 28, 2023, Discovery on Target

Courtney G. Havens

Proteovant Therapeutics

A subsidiary of SK Biopharmaceuticals

IKZF2 is an Ikaros Zinc Finger Family Transcription Factor Highly Expressed in Regulatory T-Cells

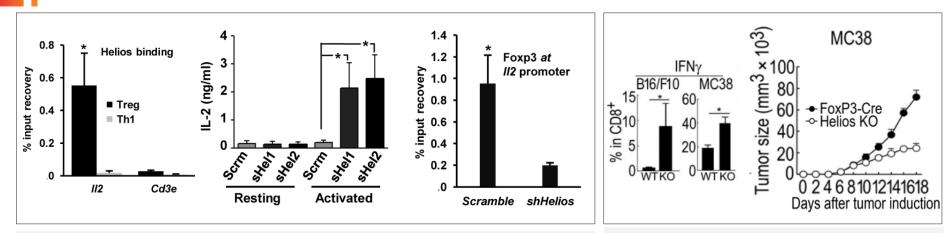


- IKZF2 (Helios) is a member of a family of five transcriptional regulators that include IKZF1, IKZF3, IKZF4, and IKZF5
- IKZF2 is comprised of four N-terminal zinc finger (ZF) DNA-binding domains and two C-terminal ZF protein-protein interaction domains
- IKZF2 expression is largely restricted to select lymphoid cells including T Helper 2 (T_H2) cells and regulatory T-cells (T_{regs})

Shahin, et al. Sci Immunol, 2021 John & Ward, *Mol Immunol*, 2011 Schematic created with biorender.com

Powell, et al., Front Immunol, 2019 Cai, et al., J Immunol, 2009 Kim, et al. Science, 2015 PROPRIETARY

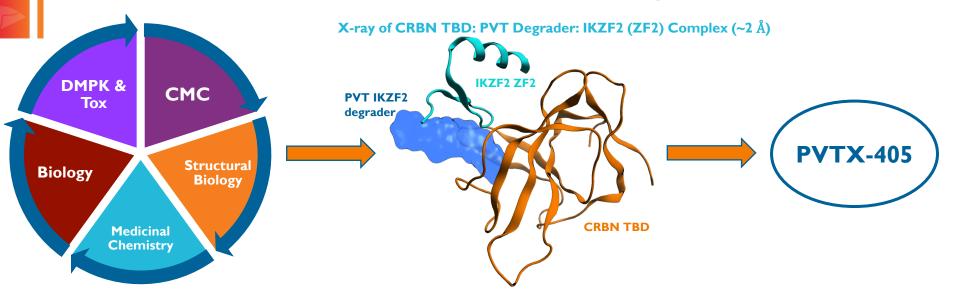
Regulatory T-cells are Key Contributors to Immune Evasion by Cancer Cells



- T_{reg} cells are an immunosuppressive subset of CD4+ T cells that play essential roles in selftolerance
- High relative abundance of T_{reg} cells in the tumor microenvironment (TME) is associated with poor prognosis in various cancer types
- Evading immune surveillance and destruction is fundamental to progression of many cancers

- T_{reg} cells exert their immunosuppressive activity through various mechanisms
 - serving as an IL-2 sink in the TME
 - suppressing inflammatory response

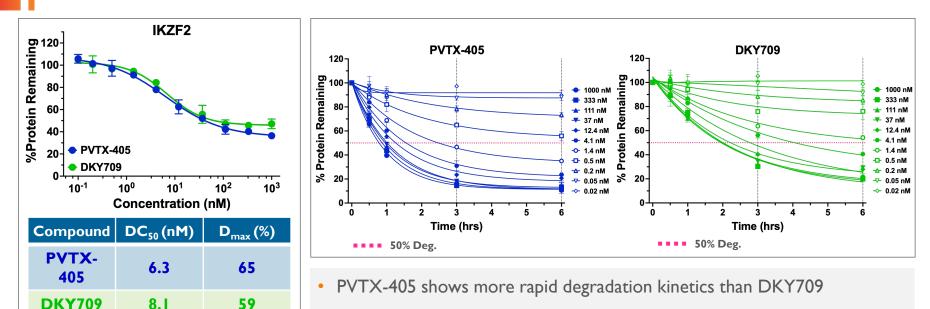
Rakebrandt, et al., Swiss Med Wkly, 2016; Togashi, et al., Nat Rev Clin Oncol, 2019; Schematic created with biorender.com


IKZF2 is Important for Immunosuppressive Activity of T_{regs}, Making it an Attractive Immuno-oncology Target

- Stable inhibitory activity of Tregs is linked to IL-2 repression
- IKZF2 binds to the IL-2 promoter in Treg cells and suppresses transcriptional activation
- IKZF2 KD results in higher IL-2 expression upon stimulation
- IKZF2 KD suppresses FoxP3 binding to IL-2 promoter

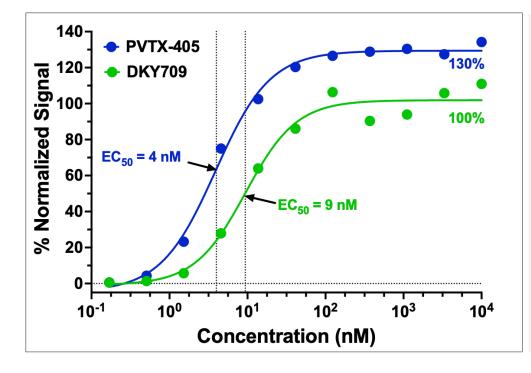
- IKZF2 KO leads to an unstable CD4 Treg phenotype marked by production of effector cytokines
- IKZF2 KO in Tregs suppresses tumor growth

Discovery of Selective IKZF2 Molecular Glue Degraders

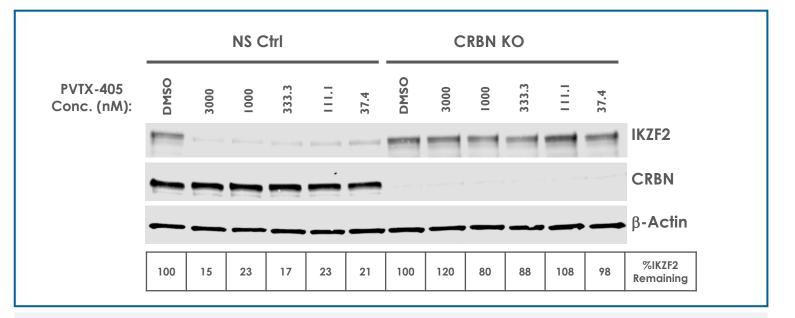

- Fully integrated discovery team applying a multi-disciplinary approach to drug hunting
- Multiple cycles of SBDD using ternary complex structures to guide lead optimization

PVTX-405 Induces Potent and Rapid IKZF2 Degradation

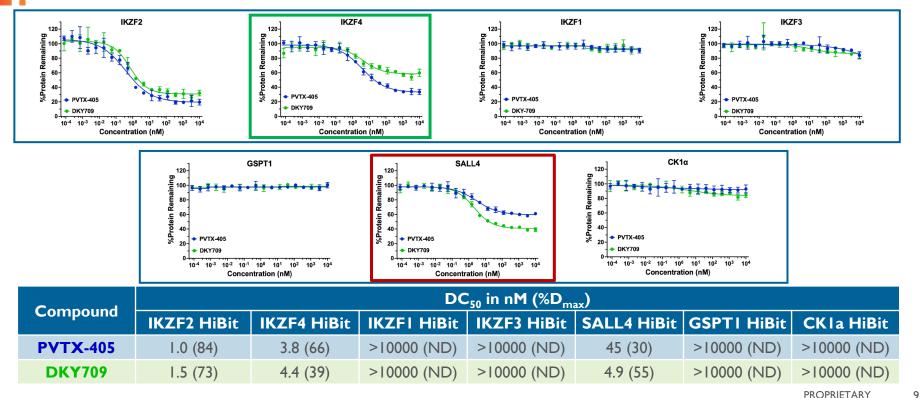
PVTX-405 shows similar potency


as DKY709 with higher Dmax

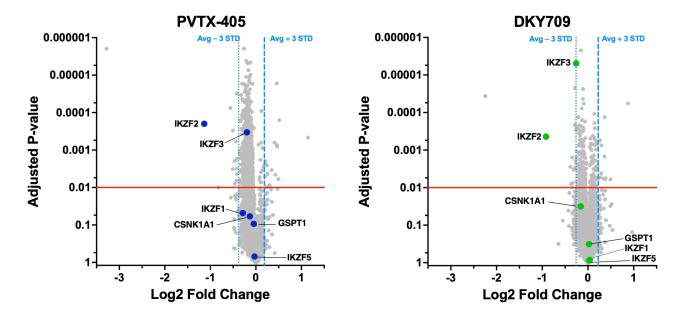
•


PVTX-405 achieves maximal degradation by 6 hrs while DKY709 requires 18 hours to reach Dmax plateau

PVTX-405 Demonstrates Robust CRBN/IKZF2Ternary Complex Formation

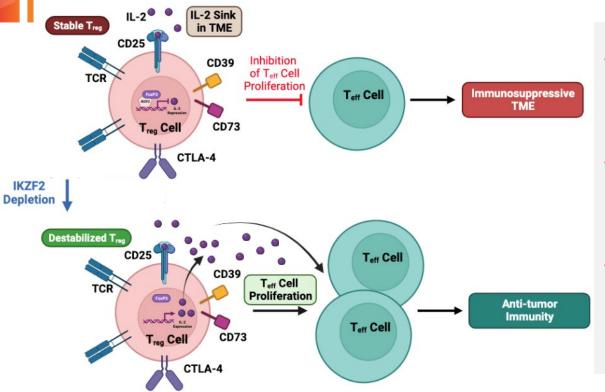

- A greater level of ternary complex is formed in the presence of PVTX-405 than DKY709
- Higher max signal and higher signal at each concentration of PVTX-405 than DKY709 are evident
- EC50 values are similar for the two compounds suggesting similar stability of the complex

PVTX-405 Mediated IKZF2 Degradation is CRBN Dependent

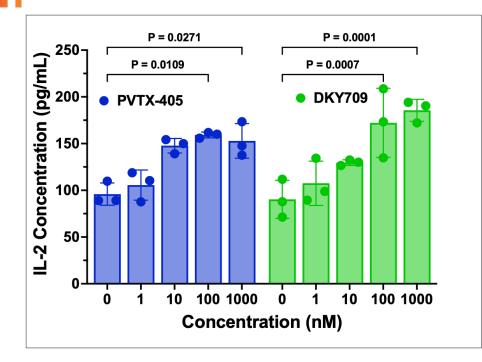


CRISPR/Cas9 was utilized to engineered CRBN knockout in Jurkat cells CRBN KO abrogates IKZF2 degradation by PVTX-405

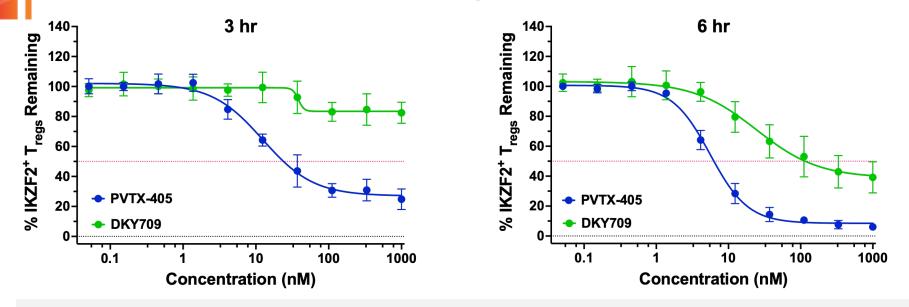
PVTX-405 Shows Selectivity Against Neosubstrates of Concern



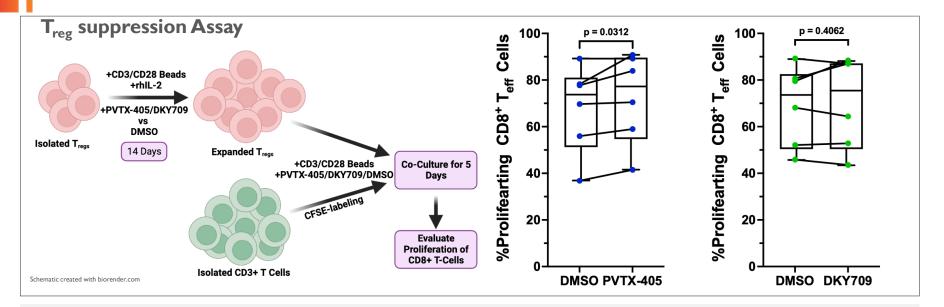
Proteomics Confirms Selective Degradation of IKZF2 by PVTX-405


- Relative protein abundance was determined using TMT proteomics
- PVTX-405 demonstrates high selectivity for IKZF2 relative to other IKZF family members, GSPT1, and other CRBN neo-substrates

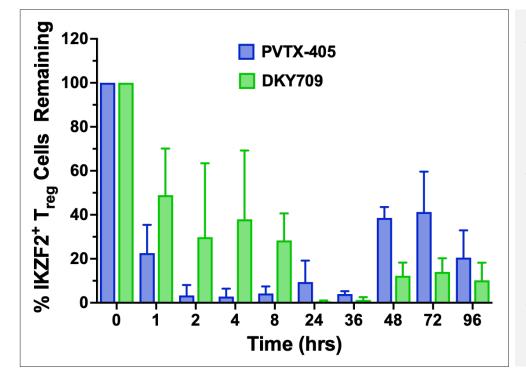
IKZF2 Depletion in T_{regs} Should Lead to Increases in Effector Cytokine Production


- T_{regs} reduce inflammatory responses by consuming IL-2 and suppressing effector T-Cell (T_{eff}) proliferation
- IKZF2 depletion should destabilize T_{regs} and induce production of effector cytokines IL-2 and IFNγ
- Increased effector cytokine production can induce T_{eff} cell proliferation and anti-tumor immunity

IKZF2 Degradation Results in Increased IL-2 Production

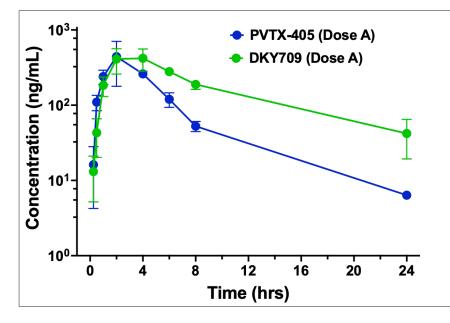

- PVTX-405 treatment of Jurkat cells results in increased IL-2
- IL-2 induction is comparable to DKY709
- Increased IL-2 production demonstrates functional consequence associated with predicted increased anti-tumor immunity

PVTX-405 Induces Rapid, Potent, and Selective IKZF2 Degradation in Primary Human T_{regs}


- Human PBMC cells were assessed using multiparameter FACS to measure effects on Tregs
- PVTX-405 demonstrates more rapid and potent degradation of IKZF2 than DKY709

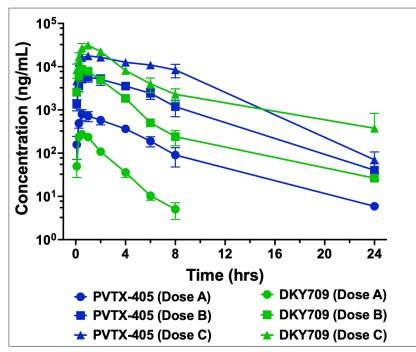
Suppression of T_{regs} by IKZF2 Enhances T_{eff} Cell Proliferation

- Impact of PVTX-405 and DKY709 on Treg induced suppression of effector T cell (Teff) proliferation was evaluated in 6 donors
- PVTX-405 treatment showed significant increases in Teff cell proliferation in Treg: Teff cell co-culture assays

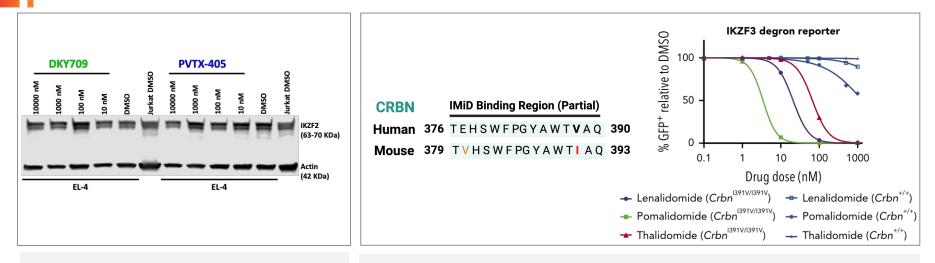

PVTX-405 Shows Robust IKZF2 Degradation in Cyno In Vivo

- Non naïve cynomolgus monkeys were treated with either a single dose of PVTX-405 or DKY709
- Whole blood was analyzed using multiparameter FACS assay to measure IKZF2 degradation in Tregs
- PVTX-405 shows >90% suppression of IKZF2+ Tregs in Cyno

PVTX-405 and **DKY709** Share Similar Oral Exposure Profiles in Cyno

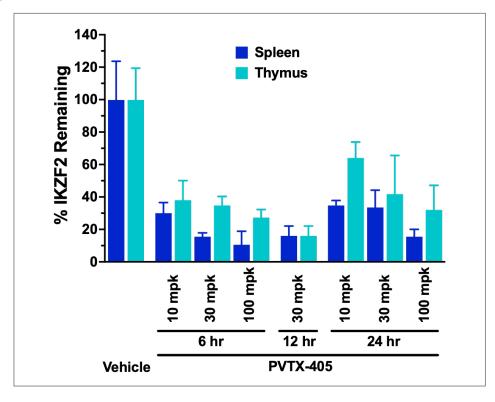

Cyno Pharmacokinetics

Compound	PO Dose, QD	Mean AUC ₀₋₂₄ ng*hr/mL	Mean C _{max} ng/mL
PVTX-405	Dose A	2200	440
DKY709	Dose A	4200	450

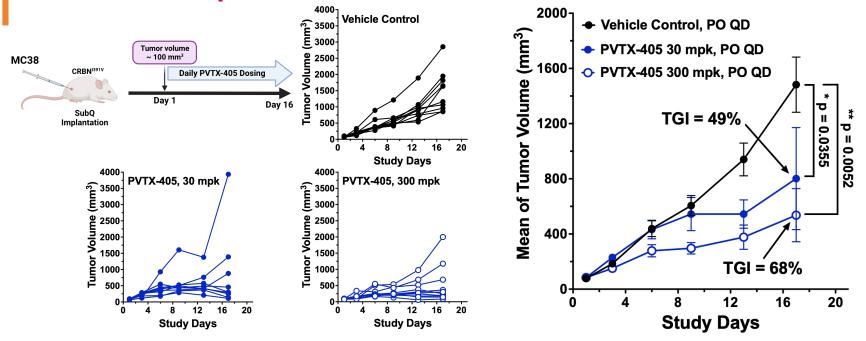

PVTX-405 and DKY709 Show Similar Oral Exposure Profiles in Mice

Mouse Pharmacokinetics

Compound	PO Dose, QD	Mean AUC ₀₋₂₄ ng*hr/mL	Mean C _{max} ng/mL
PVTX-405	Dose A	3400	880
	Dose B	38000	5900
	Dose C	171000	18000
DKY709	Dose A	590	270
	Dose B	24600	9080
	Dose C	120000	31000

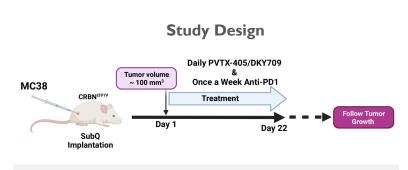

Mouse CRBN is Resistant to PVTX-405 Glue Activity

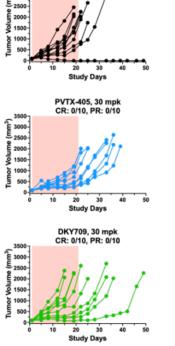
 Neither PVTX-405 or DKY709 treatment induces degradation of IKZF2 in mouse cells


- A single amino acid difference within the CRBN–Immunomodulatory drug (IMiD) binding region renders mouse CRBN resistant to degradation by IMiDs
- A change from Ile 391 to Val in mouse CRBN restores IMiD-induced degradation of IKZF3

PVTX-405 Administration Leads to Robust IKZF2 Degradation in CRBN^{1391V} Mice

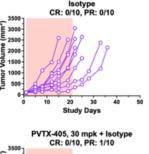
- CRBNI391V mice were administered a single oral dose of PVTX-405
- PVTX-405 shows dose dependent degradation of IKZF2 in spleen and thymus of CRBNI391V mice

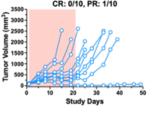

PVTX-405 Shows Significant Suppression of MC38 Tumor Growth in Immune-competent Mice

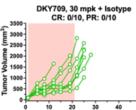

MC38 xenograft model was established in CRBN^{1391V} mice PVTX-405 inhibits MC38 tumor growth in vivo

PVTX-405 Improves Tumor Growth Suppression Induced by PDI Blockade Against MC-38 Tumors in Immune-Competent Mice

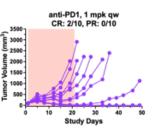
3500

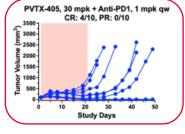


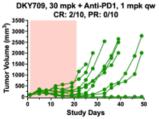

- PVTX-405 or DKY709 treatment leads to clear combination benefit with PD1 blockade
 - PVTX-405 shows more complete responses in combination with anti-PD1 than anti-PD1 alone or DKY709 in combination with anti-PD1

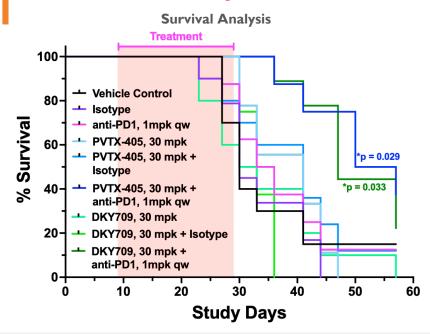


Vehicle Control


CR: 1/10, PR: 0/10






Study Days

PVTX-405 Significantly Improves Efficacy of Anti-PD I Treatment in Immune-Competent Mice

Survival Comparison	p Value
Isotype vs Anti-PDI	0.454
Vehicle Control vs PVTX-405 + Anti-PDI	0.017
Vehicle Control vs DKY709 + Anti-PDI	0.020
Isotype Control vs PVTX-405 + Anti-PDI	0.001
Isotype Control vs DKY709 + Anti-PDI	0.0004
Anti-PDI vs PVTX-405 + Anti-PDI	0.029
Anti-PDI vs DKY709 + Anti-PDI	0.033
PVTX-405 + Anti-PDI vs DKY709 + Anti-PDI	0.545

 PVTX-405 and DKY709 both induce significantly better tumor growth reduction in combination with PD1 blockade as compared to PD1 blockade alone

PVTX-405 is a Development Candidate Stage Molecular Glue Degrader of IKZF2 with Potential to be Best-in-Class

Development Candidate	 A potent, selective molecular glue degrader of IKZF2 with IKZF4 activity Demonstration of target pharmacology including IL-2 induction In vivo degradation in multiple species
Developability	 Low hERG liability; 5-fold improvement in hERG IC₅₀ compared to DKY709 Low plasma clearance and good oral bioavailability across preclinical species Low risk for DDI Excellent <i>in vitro</i> safety profile: AMES and micronucleus negative, low potential for CV and DILI risk, no reactive metabolite formation, no human-specific metabolites Good off-target and neo-substrate profile Non-GLP rat and cyno toxicology studies completed
Efficacy	• Efficacy as single agent and in combination with PDI blockade against novel MC38 syngeneic model <i>in vivo</i>

Acknowledgements

Discovery Leadership

Corey Strickland

Helai Mohammad

Larry |olivette

Scott Priestley

Winston Wu Zhihua Sui

Biology

Harshil Dhruv

Cassandra Lowenstein Michael Rossi Niu Shin Pramod Thekkat

Chemistry

Xuqing Zhang Matt Tudor Qiaolin Deng

DMPK

Hsuan-Ming Yao Rakesh Nagilla Ted Quin

Biochemistry and Structural Biology Elham Behshad Peter Orth

Proteomics

Bomie Han Pankaj Dwivedi

Project Management

Christine Stuhlmiller Melissa Yordy

Strategy

Jack Kabrich

University of Michigan Collaboration

Prof. Shaomeng Wang Zhixiang Chen Rohan Rej Donna McEachern Longchuan Bai Paul Kirchhoff

partnering@proteovant.com